首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   14篇
工业技术   169篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   13篇
  2010年   16篇
  2009年   17篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   12篇
  2004年   11篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
11.
A comparative photocatalytic analysis was carried out on TiO2 made in a Flame Spray Pyrolysis (FSP) process and flame-made Degussa P25. Both have similar crystallinity, phase composition, phase segregation and a non-porous surface. Hence comparison was made based on their difference in specific surface area, organic adsorption and the amount of OH• generated upon illumination. The photocatalytic activity tests were carried out using the following series of organic compounds: sucrose, glucose, fructose, maleic acid, glyoxylic acid, oxalic acid, isobutyric acid, phenol and methanol. FSP-made TiO2 outperformed P25 for saccharides mineralisation, while for phenol and methanol mineralisation P25 was better than FSP-made TiO2. Similar mineralisation rates were observed for both FSP-made and P25 TiO2 for the mineralisation of carboxylic acids. This shows that the relative performance of the photocatalysts depends on the type of organic compounds to be degraded. The high surface area and possibly a more efficient interfacial charge transfer of FSP-made TiO2 provided an efficient pathway for saccharides mineralisation. As for phenol and methanol, the mineralisation rates were higher when using P25 due to the greater amount of OH• radicals generated by this photocatalyst. The fast mineralisation rates of carboxylic acids made degradation of these organic compounds to be less affected by the TiO2 photocatalyst properties and conditions tested in this work.  相似文献   
12.
13.
Silver nanoparticles (nanosilver) are broadly used today in textiles, food packaging, household devices and bioapplications, prompting a better understanding of their toxicity and biological interactions. In particular, the cytotoxicity of nanosilver with respect to mammalian cells remains unclear, because such investigations can be biased by the nanosilver coatings and the lack of particle size control. Here, nanosilver of well‐defined size (5.7 to 20.4 nm) supported on inert nanostructured silica is produced using flame aerosol technology. The cytotoxicity of the prepared nanosilver with respect to murine macrophages is assessed in vitro because these cells are among the first to confront nanosilver upon its intake by mammals. The silica support facilitates the dispersion and stabilization of the prepared nanosilver in biological suspensions, and no other coating or functionalization is applied that could interfere with the biointeractions of nanosilver. Detailed characterization of the particles by X‐ray diffraction and electron microscopy reveals that the size of the nanosilver is well controlled. Smaller nanosilver particles release or leach larger fractions of their mass as Ag+ ions upon dispersion in water. This strongly influences the cytotoxicity of the nanosilver when incubated with murine macrophages. The size of the nanosilver dictates its mode of cytotoxicity (Ag+ ion‐specific and/or particle‐specific). The toxicity of small nanosilver (<10 nm) is mostly mediated by the released Ag+ ions. The influence of such ions on the toxicity of nanosilver decreases with increasing nanosilver size (>10 nm). Direct silver nanoparticle–macrophage interactions dominate the nanosilver toxicity at sizes larger than 10 nm.  相似文献   
14.
Thermophoretic sampling (TS) of the aerosol was conducted to manifest the formation of hollow and solid alumina particles in spray flames. The collected particles were investigated by transmission electron microscopy. Hollow particles with a thin shell (e.g., 10 nm) were formed from the aluminum nitrate precursor emulsion at less than 4-cm flame height. Hollow particles maintained their shapes in the flame using air as dispersion/oxidant gas, whereas hollow-to-solid restructuring of the particles took place in the flame using oxygen. With oxygen, nanoparticles were formed in the gas phase from the aluminum butoxide/2-propanol precursor solution only, whereas gas-phase reaction was hindered, forming large particles from the aluminum nitrate/2-propanol precursor solution.  相似文献   
15.
16.
Zirconia Nanoparticles Made in Spray Flames at High Production Rates   总被引:1,自引:0,他引:1  
Synthesis of zirconia nanoparticles by flame spray pyrolysis (FSP) at high production rates is investigated. Product powder is collected continuously in a baghouse filter unit that is cleaned periodically by air-pressure shocks. Nitrogen adsorption (BET), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) are used to characterize the product powder. The effect of powder production rate (up to 600 g/h), dispersion gas flow rate, and precursor concentration on product particle size, crystallinity, morphology, and purity is investigated. The primary particle size of zirconia is controlled from 6 to 35 nm, while the crystal structure consists of mostly tetragonal phase (80–95 wt%), with the balance monoclinic phase at all process conditions. The tetragonal crystal size is close to the primary particle size, which indicates weak agglomeration of single crystals.  相似文献   
17.
18.
Cooperative defensive systems communicate and cooperate in their response to worm attacks, but determine the presence of a worm attack solely on local information. Distributed worm detection and immunization systems track suspicious behavior at multiple cooperating nodes to determine whether a worm attack is in progress. Earlier work has shown that cooperative systems can respond quickly to day-zero worms, while distributed detection systems allow detectors to be more conservative (i.e., paranoid) about potential attacks because they manage false alarms efficiently. In this paper we present our investigation into the complex tradeoffs in such systems between communication costs, computation overhead, accuracy of the local tests, estimation of viral virulence, and the fraction of the network infected before the attack crests. We evaluate the effectiveness of different system configurations in various simulations. Our experiments show that distributed algorithms are better able to balance effectiveness against worms and viruses with reduced cost in computation and communication when faced with false alarms. Furthermore, cooperative, distributed systems seem more robust against malicious participants in the immunization system than earlier cooperative but non-distributed approaches.  相似文献   
19.
20.
This paper presents an efficient and accurate algorithm for machining boundaries formed at the intersection of two surfaces, an important manufacturing problem in CNC machining. The algorithm is developed using a locus tracing technique implemented on the basis of Danielson's step selection rules. A vertical ball-end milling cutter moves along the considered boundary, in contact with the two surfaces. The algorithm guides the center of the spherical end of the cutter, to maintain exact contact (within 1 step) along the entire path. A seamless formulation is used, allowing the contact points to move freely from the ball-end to the cutter periphery and vice-versa. The surfaces forming the boundary may be implicitly or parametrically defined. The reliability of the algorithm is demonstrated for both cases, by treating a complex boundary machining example. The boundary considered is formed by the intersecting quadratic surfaces of a sphere and an elliptic hyperboloid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号